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ABSTRACT 

All integral transforms can be viewed as projections onto collections of func- 

tions in a Hilbert space. The properties of an integral transform are completely 

determined by the collection of functions onto which it projects. The wavelet trans- 

form projects onto a set of functions which satisfy a simple linear relationship between 

different levels of dilation. The properties of the wavelet transform are determined 

by the coefficients of this linear relationship. This thesis examines the connections 

between the wavelet transform properties and the linear relationship coefficients. 



VI 



TABLE OF CONTENTS 

I. INTRODUCTION        1 

II. EXISTENCE, UNIQUENESS, APPROXIMATION, AND OR- 

THOGONALITY        5 

A. EXISTENCE AND UNIQUENESS  5 

B. SOME TOOLS FOR DILATION EQUATIONS  6 

C. APPROXIMATION      10 

D. ORTHOGONALITY  14 

III. THE DISCRETE ORTHOGONAL WAVELET TRANSFORM 21 

A. DECOMPOSITION OF THE FUNCTION SPACE L2          21 

B. ALGORITHM DEVELOPMENT      32 

IV. CONCLUSIONS AND DIRECTIONS FOR FURTHER STUDY 39 

REFERENCES      41 

APPENDIX A.   DERIVATION OF POISSON SUMMATION FOR- 

MULA         43 

APPENDIX B. PROJECTIONS AT FINEST SCALING LEVEL . .     45 

INITIAL DISTRIBUTION LIST          47 

Vll 



Vlll 



LIST OF FIGURES 

1. Dilation of Haar Function  3 

2. Dilation of "Hat" Function  7 

3. Organization of Basis Function    .  35 

4. Scaling Functions at Finest Scaling Level  45 

DC 



I.       INTRODUCTION 

A great deal has been written about wavelet analysis in the last several years. 

Much of this work however is presented in the language of signal processing. This 

is to be expected since wavelet analysis has been primarily developed in the signal 

processing field. This paper presents the discrete wavelet transform in a projective 

framework. The discrete wavelet transform, like most integral transforms, can be 

viewed as projection onto a new basis determined by a given collection of functions. In 

light of this the properties of the transform are primarily determined by the properties 

of the basis functions. The development of a transform is then a question of finding 

a basis which will produce the properties we desire. 

What properties do we desire in the wavelet transform? We would like the 

transform to incorporate the spectral decomposition, or frequency localization, of the 

Fourier Transform. In addition, we would like to have time-localization of the input 

function. This allows us to determine when in time a given component of the input 

function occurs. Frequency localization in the Fourier Transform is accomplished by 

projecting onto sines and cosines which have non-compact, in fact infinite, support. 

This precludes the Fourier Transform from having time localization capability. Time 

localization can be achieved by using the short time Fourier Transform (STFT), 

which analyzes the input function in small time windows. This time localization is 

fixed in scale, depending on the time window used. Another desired property of the 

wavelet transform is arbitrary approximation power. This is useful if we wish to 

use the transform in a data compression scheme, that is, setting to zero transform 

coefficients below a certain threshold level and storing the input function in terms 

of this reduced coefficient set. Finally, and perhaps most importantly, we desire the 

basis onto which we project to be orthonormal. This will allow easy inversion of 

the transform. If the basis is orthonormal, inversion is accomplished by weighted 

superposition of the basis functions using the transform coefficients as weights. This 



is the case with the Fourier Transform which uses the orthonormal sine and cosine 

basis. This is contrasted with the Laplace Transform which uses an exponential basis 

which is not orthogonal over the real line. This is why the Laplace Transform must 

be inverted by a contour integral in the complex plane. 

The question of developing a transform with these properties is reduced to that 

of finding a basis for L2, the space of square integrable functions on the real line, which 

possesses the desired properties, namely, time and frequency localization, arbitrary 

approximation power, and orthogonality. If we restrict our attention to compactly 

supported functions, we can achieve a measure of time localization, however only at 

a fixed level dependent on the support of the basis function. This severely limits the 

frequency information available as well, since we can only clearly discern the frequency 

which corresponds to the basis functions. Compactly supported functions are easier 

to compute with, hence their use in finite element methods, and we would like to 

use them here. We need to find a way to use compactly supported basis functions 

without limiting the time or frequency information available to us. The solution is to 

use dilations of a compactly supported function. A dilation of / (x) is / (ax) for some 

a, normally a > 0. Notice that as we dilate a function / the support of / changes 

and also the frequency of / changes. This allows us to cover much wider time and 

frequency scales than using basis functions of fixed compact support. To give us 

the maximum amount of flexibility we will use a basis composed of translations and 

dilations of a fixed function <j>. 

Consider the dilation equation, or two scale recursion relation 

<j) (x) = 2_jCk<t> (2x — k)        for some {ck} . (1.1) 
k 

The solution is completely determined by the dilation equation coefficients {cfc}. Also 

notice this dilation equation with coefficients {c0 = l,c1 = l}is satisfied by the Haar 

function: 



h(x) = 
1    for x e [0,1] 

0   for x £ [0,1] 

h(x) h(2x) h(2x-l) 

Figure 1. Dilation of Haar Function 

The Haar Transform which uses as a basis functions derived from h(x) is in 

fact an early example of a wavelet transform and predates the current interest in 

wavelet analysis by several decades. 

In this paper we show that solutions to 1.1 exist which have arbitrary approx- 

imation power and are orthogonal to their integer translates. We further show how 

these solutions can be used to construct a basis for L2, and how the discrete transform 

which represents projection onto this basis can be computed in order iV operations. 





II.        EXISTENCE, UNIQUENESS, 
APPROXIMATION, AND ORTHOGONALITY 

A.     EXISTENCE AND UNIQUENESS 

Before we investigate the relationship between the coefficients of the dilation 

equation and the properties of the solutions, we need to determine under what con- 

ditions a solution in fact exists. To begin our search for solutions to the dilation 

equation let us consider the iteration 

<f)n+1 = ]P ckcj)n (2x - k). {Ill) 
k 

Solutions to the dilation equation are fixed points of the dynamical system defined 

by this iteration. The following theorem, which we present without proof, gives 

conditions under which square summable solutions to the dilation equation exist and 

is found in [Ref. 1]. 

THEOREM II.1. If the {ck} satisfy the following conditions 

1. {et} is a finite set, 

2- Ek c* = 2, 

3. \m0 (z) |2 + \m0 (z + TT)|
2
 = 1 for all zeE, where m0 (z) = £fc cke~ikz 

then the dynamical system in II. 1 has a nontrivial square summable fixed point 
with compact support. 

In the same paper, a similar result is presented for distributional solutions to 

1.1 which does not require the third condition. In practice we are looking for a basis 

for the function space L2, so we restrict our attention to square summable solutions. 

Uniqueness of this solution, up to normalization, is guaranteed by the same 

conditions which give us existence. In the square summable case the normalization is 

/ <j)dx = 1. Observe that this normalization requirement is consistent with condition 



2 above since 

/ (f> (x) dx   =    / Y^ ck(f) (2x — k) 

=   -^2,ck j 4>(y)dy       where y = 2x - k 
k      •* 

implies       T,/_,ck   =   1       or        y^cfc = 2. 
fc k 

Before proceeding with our discussion of approximation let's look at some 

solutions to 1.1 which are familiar to us. In the introduction we saw for coefficients 

{1,1} the solution to 1.1 was the Haar function. Other familiar functions which are 

solutions to the dilation equation, though we may not recognize them as such, are the 

Dirac delta function for {2} and the cardinal B-splines for {(™)} normalized to sum 

to two. The Figure 2 shows the dilation of the "Hat" function which is the solution 

for the dilation equation for {\, 1, |}, the binomial coefficients for n = 2, normalized 

to sum to two. 

The Cardinal B-splines illustrate why the third condition in Theorem II. 1 is a 

sufficient but not necessary condition for square summability. The Cardinal B-splines 

are clearly square summable, but it is easily seen that {(£)} do not satisfy the third 

condition of Theorem II. 1. 

B.     SOME TOOLS FOR DILATION EQUATIONS 

Before proceeding with our investigation of the relationship between the di- 

lation equation coefficients {ck} and the corresponding solution (f>(x), we should in- 

troduce a very useful tool in the study of dilation equations. Dilation equations are 

difficult to study because only in special cases do we actually know what the solution 

function is. We are usually limited to knowing only the recurrence relation between 

different scalings of the function. Faced with this lack of information we must turn 

to the Fourier Transform to glean any information we can about the function. Let us 

see what the recursive nature of 1.1 can tell us about the solution (f>(x). 



-0.2- 

Figure 2. Dilation of "Hat" Function 

We are given 

4>{x) = 2_^ Ck<ß(2x — k) for some {ck} 
k 

Now, consider the Fourier Transform <&(£) of (j){x) 
/OO 

<f)(x)e-^xdx 
-oo 

substituting II.2 into II.3 we get 
/oo 

e-^xJ2ckH^-k)dx 
OO i. 

or 

(II.2) 

(II.3) 

/oo 

<f>{2x - k)e-iixdx 

in each integral of this sum make the change of variables y = 2x - k which yields 

*(6 = ^ECke *    /     <f>(y)e^dy. (II.4) 



Now, notice the integral in II.4 is <&(|) ,so we have 

Applying this process repeatedly to $(£/2), $(£/4), ...$(£/2n) we get 

Let us now take the limit as n —¥ oo, 

oo   1 

If we require by way of normalization that J (frdx = 1 then we have $(0) = / (f)dx = 1 

and II.5 becomes 
oo   1 

Notice we could write this infinite product as 
oo   1 

Now we see the importance of the 7710(2) expression in the third condition of Theorem 

II.1, the behavior of this trigonometric polynomial determines the convergence of the 

infinite product representation of the Fourier Transform, and therefore the existence 

of a square summable solution to 1.1.   A fairly simple, yet powerful result of this 

infinite product representation of the Fourier Transform is the Convolution Theorem 

for Dilation Equations. 

THEOREM II.2. Let </> and ip be solutions to the dilation equation for coefficients 
{cfc} and {di} respectively. The function (ß*ip given by the continuous convolution of 
<fi with cp is the solution to the dilation equation with coefficients {bj}, where {bj} is 
one half the discrete convolution of {c^} with {di}. 

Proof. As we have seen the Fourier Transforms of <f> and cp are given by 
00  ^ 00  1 

®(0 = Il2^2Cke^k    and   ^(o = H^J2die^L 
n=0 k n=0 I 



respectively. The product of these transforms $W is given by 

oo   1 oo    1 

^=H2^2cke^än2^2die^L- 
ra=0        A; m=0 I 

We can combine the two product operators by associating the factors where n = m 

to get 

00  1 -    1 

n=0        k I 

Observe each factor in this infinite product is a product of two polynomials in e v- , 
-in 

namely, | ^fc c^e v-   and | Yli die 2" • Let p (£) be the product of these polynomials. 

Prom polynomial multiplication, we see the coefficients of p (£) are given by 

1   A 

bx= ol-jCidx-^ 
13=0 

that is, the set {b\} is one half the discrete convolution of {ck} with {d{\, and the 

product polynomial p is 

P(0 = v^2he>n 

x 

Substituting this into the expression for $\£ gives us 

00  1 
^ = H^J2bxe^- 

n=0        X 

Observe the right hand side of this equation is the infinite product representation 

of the Fourier Transform of the solution to the dilation equation with coefficients 

{b\}. Thus, $\I> is the Fourier Transform of the solution to the dilation equation for 

coefficients {bj}. Now, from the convolution theorem for Fourier Transforms we know 

t&Nt is the transform of (f> * ip, the continuous convolution of <j> with </?. Since Fourier 

Transforms are unique this completes the proof. D 

Armed with this result we see why the Cardinal B-splines are solutions to 

the dilation equation for the binomial coefficients normalized to sum to two. If we 

develop B-splines from a repeated convolution standpoint as is done in [Ref. 4], the 
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relationship between B-splines and binomial coefficients becomes transparent in light 

of Theorem II.2. To generate the B-splines we start with the Haar function which we 

can consider the "zeroth" order B-spline (piecewise constant approximation), we get 

the next higher order B-spline (piecewise linear approximation) by convolution with 

the Haar function. By our convolution theorem this says we should take one half the 

discrete convolution of {1,1} with itself. Convolving {1,1} with itself we get {1, 2,1} 

the binomial coefficients for n = 2, which we must normalize to sum to two. Similarly, 

to generate the (n + l)st degree B-spline we convolve the nth degree B-spline with the 

Haar function, so we convolve the coefficients of the nth degree B-spline with {1,1}. 

This gives us the binomial coefficients for n+1, which again we must normalize to sum 

to two. The appearance of the B-splines is of more than passing interest. B-splines 

and their translates are often used as a basis for approximation. This is very similar 

to the scheme we are investigating. We are pursuing the goal of representing L2 in 

its entirety rather than approximating functions in a subspace of L2. Another aspect 

of spline approximation which will be of great importance in the next section is the 

use of sliding window filters as a tool to smooth data. Sliding window filters can be 

viewed as convolution with the Haar function. Thus repeated application of sliding 

window filters is equivalent to repeated convolution with the Haar function, both of 

which lead to smoother data, or smoother approximation if one is constructing a basis 

function, as we shall see in the next section. 

C.     APPROXIMATION 

Since we will be using solutions to 1.1 as a basis for approximation we would like 

to know how well an arbitrary function can be approximated by 0 and its translates. 

Our measure of approximation power will be polynomial precision, or what degree 

arbitrary polynomial can be exactly represented by <f> and its translates. A key step in 

finite element methods is to approximate a function by the translates of a compactly 

supported basis function. To determine the approximation power of solutions to the 

10 



dilation equation we consider the work done on the finite element method by Strang 

and Fix. In [Ref. 3] they show that the following statements are equivalent: 

1. Any polynomial of degree less than or equal to p— 1 can be exactly represented 
by a linear combination of <j> and its translates. 

2. $(0) ^ 0 and J^$(£) k=2™= 0 for n e Z,n ^ 0 and a = 0,1, ...,p. 

The first of these statements is the definition of approximation power that 

we are interested in, the second is related to the Fourier Transform of the function 

<j>. We will use the second statement to construct a condition on {cjt} that will give 

the desired approximation power. First notice that $(0) ^ 0 is taken care of by our 

normalization requirement since 

$ (0) =  f (j>e-Mxdx =  f (j)dx 

To satisfy the rest of this statement we must look at the infinite product representation 

of <3> (0 
oo   1 

2n 

2 
n=l k 

Since this product converges and $(0) ^ 0 we see that the product vanishes for some 

value of f if and only if at least one of its factors vanish for that value of £. Observe 

that the following condition is sufficient to ensure the desired behavior of <& (£): 

•    z = 7T is a root of order p of m0 (z). 

In the previous section we saw 

* (0 = 11^0 
n=l 

1 
2n (II.6) 

Now, for all I E Z, I ^ 0, there exists n such that ^±  mod 2n = IT. Therefore, one 

of the factors in II.6 is zero, and <3> (2nl) = 0. Now consider 4 [$ (£)], d£ 

*™l-*L m°l| 
n ,   (t\ d n^i^ 

.fc^n 

(II.7) 

11 



Since m0 (z) has a root of order p at TT, the right hand side of II.7 is zero. Similarly 

we can see &£■ [$ (f)] = 0 for j = 0,1, ..p provided m0 (z) has a zero of order p at TT. 

Unfortunately, this elegant sufficient condition on m0 (z) is not necessary. 

Observe, if ± [$ (£)] = 0, ^ [m0 (TT)] need not be zero, since m0 (f), which is a factor 
of Il/fc^n mo ( JF) could be zero, in which case, II.7 will be satisfied regardless of the 

value of ^ [m0 (TT)]. 

The sufficient condition for the approximation power of $ can be arrived at in 

several ways. In [Ref. 2] it is presented as a sum condition, that is: 

N 

^2 (-1)1 lkct = 0        for k = 0,1, ...,p - 1. (II.8) 
j=o 

We can see this is equivalent to our condition that TT be a root, of order p, of m0 (z), 

by first expressing the sum condition as a matrix equation, 

Kc = 0 

where 

KisapxiV + l matrix with the following structure: 

1 -1 1 -1 1     ••■ 

0 -1 2 -3 4      ... 

0 -1 4 -9 16    ••• 

0 -1 8 -27 64    ••• 

0 -1 16 -81 256   ••• 

Calculating the null space of this matrix yields a basis for the null space which is 

given by {[vf\} where [uj] is the N + 1 long vector whose non-zero entries begin 

at the kth position and are the binomial coefficients (p) for k = 1, 2,..., N - p.  For 
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example, a basis for the null space of 

1 -1 1 

0-12 

0-14 

-1 1 

-3 4 

-9 16 

IS 

' 
1 

3 

0 

1 

> 

* 3 

1 

) 3 

3 

> 

k 

0 1 
j 

Since this is a basis for the null space of K, any {ck} which satisfies the sum condi- 

tion II.8 must be a linear combination of the basis vectors. Since the basis vectors 

are shifted copies of one vector, the matrix whose columns are the basis vectors is 

Toeplitz. So, any linear combination of the basis vectors can be represented as the 

product of this Toeplitz matrix T with a vector whose elements are the weights in the 

linear combination. Alternatively, we can consider this multiplication by a Toeplitz 

matrix to be discrete convolution of the vector of weights with the vector of binomial 

coefficients, i.e. polynomial multiplication if we consider the elements of these vectors 

to be coefficients of polynomials. 

So, what does all this do for us? Any {cfc} which satisfies II.8 can be considered 

to be the coefficients of a polynomial / (x) which in turn can be expressed as the 

product of two polynomials g (x) and h (x). The coefficients of g (x) are given by the 

binomial coefficients (?) where p is the required approximation power. Recall that 

the polynomial with coefficients (?) is g (x) = (x + l)p. That is, the polynomial with 

coefficients {ck} has a root of order p at x = -1. Now, if we consider the relationship 

between the trigonometric polynomial m0 (z) = J^k cke
ikz and the polynomial / (x) = 

Ylk ckx
k, we see / (eiz) is equivalent to mQ (z). Further, if / (x) has a root at x = -1, 

then m0 (z) has a root at TT. 

13 



Yet another way to see the sufficiency of our condition for approximation 

power is to observe that each higher order of the root of m0 (z) at ■n is equivalent 

to an additional factor of (x + 1) in the polynomial whose coefficients are {c^}. In 

turn, each of these factors is equivalent to the discrete convolution of a smaller set 

of coefficients with {1,1}. Now, by our convolution theorem for dilation equations 

each of these discrete convolutions is equivalent to the continuous convolution of a 

function which precedes <f> with the function whose dilation equation coefficients are 

{1,1}. Of course the function with dilation equation coefficients {1,1} is the Haar 

function. Recall that the Fourier Transform of the Haar function is -—' ^', which 

decays like j. Each factor of [x + 1) in the polynomial whose coefficients are {ck} 

introduces a factor which decays like j in the Fourier Transform of <j). Each factor 

of j in the Fourier Transform implies one degree of smoothness, or approximation 

power in the function <f>. 

D.     ORTHOGONALITY 

As stated in the introduction, an orthogonal basis of functions is advanta- 

geous. Orthogonality allows us to reconstruct the input function from its transform 

coefficients by summing the basis functions weighted by the transform coefficients. 

This is the case in the Fourier Transform. By contrast the Laplace Transform uses 

the exponential functions {epx} as a basis. These functions are not orthogonal over 

the real line and as a result the inverse Laplace Transform involves a contour integral 

in the complex plane. We wish to take advantage of this ease of inversion, so we will 

restrict our attention to orthogonal basis functions. Again, we are limited by not 

having an explicit representation of our basis functions. We must show that there 

exist solutions to 1.1 which are orthogonal to their integer translates. Additionally, 

we still require these functions to have the desired approximation power. 

Fortunately, such solutions do exist. In fact, we have already seen one of 

them.   The Haar function is the solution to the dilation equation with coefficients 

14 



{1,1}. Since the Haar function has support width of one unit, any integer translate 

of the Haar function has support which does not intersect the support of the original 

Haar function therefore the Haar function must be orthogonal to any of its integer 

translates. However, the Haar function has poor approximation power, and is not 

an ideal candidate for use as a basis for an integral transform. The other members 

of the Cardinal B-spline family are used for piecewise approximation by higher order 

polynomials and therefore have increasing approximation power and might be good 

candidates for transform basis functions. Unfortunately, the higher order Cardinal 

B-splines are not orthogonal. This is easily seen since each of the B-splines is positive 

valued over their support and the product of two B-splines with intersecting support 

would be positive, thus the inner product of these B-splines would be non-zero. In this 

section we develop both necessary and sufficient conditions for orthogonal solutions 

to the dilation equation. 

Let us first look at the consequences of this orthogonality, and develop a 

necessary condition. Suppose <j) (x) is orthogonal to its integer translates <j>(x — k) 

for all k E Z, k ± 0. Orthogonality here is with respect to the inner product on L2, 

that is 
/oo   

f(x)Jfr)dx. 
-oo 

So far we have only considered real dilation equation coefficients. We will continue 

to restrict our attention to real coefficients. However, the following development is 

presented allowing the possibility of complex coefficients to be consistent with the 

above inner product. 

Suppose <j> (x) is orthogonal to <j> (x - k) for k G Z, k =£ 0; additionally suppose 

(j> {2x) is orthogonal to <j> {2x - j) for j G Z, j / 0, then 
/oo   

4> (x) <j>{x- k)dx. 
■oo 

Substituting in LI for <j> (x) and <f>(x — k) we get 
/OO   /.OO         

<t> (x) <ß(x- k)dx = ]T Q</> (2x - I) ^c^<t>{2(x-k)-m)dx. 
OO J—OO       i 

15 



Interchanging the order of integration and finite summation 

/OO            /"O0   

(j)(x)(t)(x-k)dx = Y^^ci^        <j>{2x-l)<f>(2x-2k-m)dx.       (II.9) 
00 l       m ^-°° 

Since <f> (2x) is orthogonal to <f> (2x - j) for j e Z, j'^ 0 the integral on the right hand 

side of II.9 must be zero unless I = 2k + m. This simplifies II.9 to 

/oo     />oo   

0 (x) <f> (x - k)dx = ^2 c*cT2fc /     4>(2x -l)</> {2x - l)dx. 
-oo 1 J—00 

So, if <f> (x) is to be orthogonal to (f> (x — k) we require 

/oo   

(/)(2x-l)(f){2x-l)dx = 0. 

And since we assume (j) is not identically zero, the above integral cannot be zero, thus 

^C/Q7^ = 0        for k €Z, k ^0. (11.10) 
1 

Additionally, when k = 0 

/oo     /-oo   

(j) (x) (j) {x)dx = Y^ CJQ  /     <j)(2x — l)(j) (2x - l)dx. 
-00 f J—00 

Let j/ = 2a; — I in the right hand integral and we get 

/OO   1         /"OO   

<ß(x)<f)(x)dx = -^2clci        (f>(y)<f>{y)dy. 
•00 ~   1 J—00 

For this equation to be true we must have 

y^cicj = 2. 

We can combine these to get a necessary condition for orthogonality 

^2 ci^2k = 2Sk       for all k E Z (11.11) 

where <5fc is Kronecker's delta function: 5k = 1 for k = 0, <5fc = 0 for k ^ 0. 

It appears that 11.10 is yet another condition we are imposing on the dilation 

equation coefficients.   However, with a little work we will see that this necessary 
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condition for orthogonality in 11.10 is equivalent to the third sufficient condition for 

square summability in Theorem II.1, expressed in terms of the coefficients rather 

than in terms of the polynomial m0 (z). Let us start with the third condition from 

Theorem II.l, 

|m0(z)|2 + |m0(z + 7r)|2   =   1       for all z e R (11.12) 

where       mQ(z)   =   \^cke
ikz. (11.13) 

2 
k 

First, observe 

m0(z + TT) = 1^2 C
^

KZ+V)
 = \ E <*<?"***- (n.14) 2^ * 2 

k k 

Now, if k is even, elkn = 1, and if k is odd, e%k7r — — 1 so 

m0(z + 7r) = ~^2(-l)k cke 
k 

Recall |C|2 = CC which leads us to 

|m0(z)|   + |m0(z + 7r)|   = m0{z)m0 (z) + m0 {z + n) m0 (z + IT). 

Substituting in the expression for mo (z) from 11.13 and the expression for mo (z + ir) 

from 11.14 we now get 

|m0(2:)|2 + |m0(z + 7r)|2 = 

\ E c^kz\ E c^lz + \ E (-1)* c^kz\ E (-1)' c^z- (IL15) 
k I k I 

Carrying the conjugation down into the trigonometric polynomials and simplifying 

we get 

|m0(2;)|2 + |mo(z + 7r)|   = 

\Ec*eifczE^e^ + iE(-1)*c^kzE(-i)'^-"*- (IL16) 
k l k I 
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This sum is a Laurent polynomial in e%z. Keeping in mind that this sum must equal 

one for all z e R, we see that the coefficients of (etz)n for n ^ 0 must be zero since the 

sum is real-valued. We need an expression for the coefficient of (elz)n; with a little 

work we can see this expression is 

0n = — 2_^ CjCj-n + T {— 1)   2_^ cjcj~n- 
0 3 

Now notice, if n is odd then bn is zero automatically. If n is even then we can say 

n = 2m for some m 6 Z, and 

71 ~~ o 2_y c-?c-?~ 2m 0 

thus 

y j CjCj_2m = 0        form€Z,m^0 

when m = 0, bn — 1 and 

E cjcj 

Combining these conditions we get 

y   CjCj^2m = 25m        for all    m e Z 
j 

as in condition 11.10. This chain of arguments can be reversed to derive 11.12 from 

11.10.   So, we have shown the equivalence of the two conditions.   If we look for 

orthogonal solutions to the dilation equation, the coefficients necessarily satisfy the 

sufficient condition for square summability. 

This is all well and good, but we still need to find a sufficient condition on 

the dilation equation coefficients to ensure orthogonality.  There is a necessary and 

sufficient condition for orthogonality of the solutions of the dilation equation. This 

condition can be found in [Ref. 5], where it is expressed in terms of the location of 

the roots of the trigonometric polynomial m0 (z) as defined in Theorem II. 1.   This 
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condition, while it has the advantage of being both necessary and sufficient, is a little 

cumbersome. We will instead present a slightly stronger condition on the placement 

of roots of TOO (Z) which is also sufficient for orthogonality. This condition is found in 

[Ref. 5] as well and relies on the necessary and sufficient condition mentioned above. 

We present it here and refer the reader to [Ref. 5] for proof. 

THEOREM II.3. Let <fi be the solution to the dilation equation for coefficients {c^}. 
Suppose TOO (Z) = \ J^k c*t%kz satisfies \m0 (z) |2 + |TO0 (Z + ir) |2 = 1 for all z eR , and 
TOO (0) = 1. // TO0 (Z) has no zeros in [— f, |], then 0 (x) is orthogonal to <f>(x - k) 
for all k el, k^ 0. 

Notice since we required J2k c* = 2, we automatically satisfy m0 (0) = 1. 

Also, the sufficient condition for approximation power was that m0 (z) have roots of a 

given multiplicity at 7r, it is encouraging that this does not conflict with the sufficient 

condition for orthogonality. 

Well known examples of compactly supported, orthogonal solutions to the 

dilation equation with higher approximation power than the Haar function are the 

scaling functions associated with the Daubechies' Wavelets [Ref. 2]. We will describe 

what a wavelet is in the next chapter. 
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III.        THE DISCRETE ORTHOGONAL 
WAVELET TRANSFORM 

A.     DECOMPOSITION OF THE FUNCTION SPACE L2 

In the previous chapter we saw that we could find solutions to the dilation 

equation. We also saw that these functions could be made to have a specified ap- 

proximation power and be orthogonal to their integer translates. In order to develop 

a transform based on these functions we must show that a basis for L2, the space of 

square integrable functions defined on the real numbers, can be formed from solutions 

to the dilation equation. As we have previously seen, the solutions to the dilation 

equation are square integrable provided the dilation equation coefficients meet some 

basic conditions. In this section we will show that we can derive from the solution 

to the dilation equation a basis for L2, and that we need not impose any additional 

conditions on the dilation equation coefficients to accomplish this. 

Let us consider the space, call it Vo, of functions which can be expressed as 

linear combinations of the solution (j) to the dilation equation and its integer translates. 

Since (j) is square integrable, V0 is a subspace of L2. Let us also consider the space, 

call it V-i, spanned by <j> (2x — k) where k G Z , this space is composed of functions 

which are linear combinations of \/2(f) (2x) and its half integer translates. We have 

scaled the function by \fl so that the norm, in L2, of the prospective basis function 

will be one, this has no impact on the space spanned by the functions. Again, since (j) 

is square integrable 0 (2x) is also square integrable and V_x is a subspace of L2. If we 

continue in this manner, taking spaces spanned by <f>jk = 2~H2(f) {2~*x — k), we get an 

infinite sequence of subspaces of L2, namely V0,V-i, Vl2,.... If we also allow positive 

indices for these spaces, which implies negative powers of 2 in 2~H2(j) (2~^x — k) we 

get a bi-infinite sequence of subspaces of L2 

Vj = linear span {(j) (2~jx - k) \    keZ]        for j e Z. 

This sequence of subspaces has the following properties. 
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1. The Vj form a nested sequence, that is Vj C Vj^\. 

Suppose f £ Vj then / is a linear combination of <f>{2~^x — k). Since <f> is 
a solution to the dilation equation, (j) (2~^x — k) is a linear combination of 
<t> (2-tt~Vx - k), thus Vj C Vj-!. 

2. / (x) e ^ if and only if / (2a:) € Vj-i. 

Suppose f(x) = J2ak<f>(^jx-k), then /(2a:) = £ ak<j> (2^'(2a:) - k) = 
J2otk(f) (2~ü~^x — k) thus /(2a:) e V}_x. Conversely, suppose /(2y) € T^_j 
then, /(2y) = ^)M (2~ü"1)y - A;) = 5>^(2-'(2y) - A;). Now let x = 2y, 
and we get / (x) = Y^ak4> (2"Jx — A;), thus / (x) <E V}. 

3-nJez^ = {o}- 
It is sufficient to show that for all / 6 Cg°, the space of infinitely differentiable, 
compactly supported functions, (Pjf,f) -> 0 as j -> oo. Here Pjf is the 
orthogonal projection of / onto Vj. As a consequence of 11.11 the <f)jk form an 
orthogonal set. Thus, {<f>jk} constitutes an orthonormal basis for Vj, and the 
orthogonal projector P_j can be expressed as 

Pjf = y^2(<f>jk,f)^jk- 

So 

(Pjf, /> = ( E to*. /> &*> / ) = E I to"*, /)f 
\  fc Ik 

and if we assume / has support [—a, a] 

I to*, /) I2 =   f / (*) 2-J'2<j>{2-ix-k)dx 
J —a 

I   / (x) 0 (2-J'x - A;)da: 
«/ — a 

— 9-J = 2 

As a consequence of Holder's inequality 

j   f{x)<j>{2-Jx-k)dx<\\f\\   ( f   (f){2~jx-k)(f)(2^x-k)dx\     , 

so 

/   f{x)(f>{2-ix-k)dx 
J —a 

2 ra 

j \\f\\2 

<2^'||/|r /    \<ß{2-jx-k)\ dx 

ll/l!2 / 
J\v- 

< II fir / \<f>(y)\Zdy. 
\y+k\<2~Ja 

22 



Observe that as j —> oo the integral on the right hand side goes to zero 
independent of k. Also, each \((j)jk, f)f is non-negative. Combining these two 
facts we see 

0 < (Pjf,f) < ll/ll2^ / \<t>{y)\2dy -»■ 0 as j -+ oo 
k    J\y+k\<2-ia 

thus,ni6Z^ = {0}. 

These properties, while very helpful, leave us somewhat short of our goal of 

producing a basis for L2. The most obvious shortcoming is that we have not shown 

that any collection of these functions span L2. Before we address the issue of spanning 

L2, let us consider a property of <$>, the Fourier Transform of 0. As we shall see, the 

following limit is of interest to us 

/oo 

\<S>(2-juj)\2\g(Lü)\2(Lj 
■00 

for arbitrary g e CQ
0
. In [Ref. 1] we see that subject to the conditions already 

imposed on {ck}, <3> is an entire function. Additionally, we have seen $ (0) = 1, and 

|<fr (z)\ < 1 for z € R. We can now use Lebesgue's bounded convergence theorem 

[Ref. 6] to show 

/oo /-oo 

\$(2-ju>)\2\g(üj)\2dü>= /     \g(co)\2cLu. (ULI) 
■oo J-oo 

Now, let us get back to trying to span L2 with some collection of (f>jk- What 

we wish to show is Üjez K?' = ^■ Since the Vj are nested, it will be sufficient to show 

that (P-jf, f) —> (/, /) as j —t oo for all / e I? such that /, the Fourier Transform 

of /, is in CQ°. Let / 6 I? such that / = g 6 C£°. As we have seen before the 

orthogonal projector P_j can be expressed as 

fcez 

Again we see 

feez 
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Recalling that the Fourier Transform we are using has the normalization constant 

in the inverse transform, inner products in the function space are related to inner 

products in the transform space by (<f>, ip) = 2% ($, W). By standard operational rules 

for Fourier Transforms we can see $-jk, the Fourier Transform of (f>-jk as defined 

above is given by 

All of this now leads us to 

/oo   

g(w)2-J/*e2->ki»$(2-3üj)du. 
-oo 

Simplifying where possible and making the change of variable z = 2~
J

UJ we get 

/oo 

g {2jz) $ (z) e-
kizdz. 

•oo 

Recall that g has compact support, so for sufficiently large j, g (2jz) is nonzero only 

in [—7r,7r] and we can simplify the integral to 

(/, <f>-jk) = 2TT2->
/2
 /   g (2jz) $ (z) e~klzdz. 
J —IT 

(III.2) 

Now, the right hand side of III.2 is just the kth Fourier coefficient of the function 

2-^22Trg(2Jz)^(z). The quantity we are interested in, namely (P-jf,f), is given 

by the sum over k of the squares of the magnitudes of the individual inner products 

given in III.2. Since each of these individual inner products is a Fourier coefficient 

for a specific function, we can use Parseval's Equality to arrive at 

(P-if, f) = J2 27v2~j/2 f 9 (Vz) <& (z) e~kizdz 

= h I   \2~j/*2n9 {Vz) $ (z)\2 dz. 

Collecting terms and simplifying where possible we get 

(III.3) 

(P-jf, /) = 2TT2-^ ^ \g (23z) $ (z) |2 dz. 
J —IT 
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If we now revert to the original variables, that is, let 2^z = u> we get 

/2J7T /-00 

\g(u)^(2^u)\2du = 2'K /     \g (u)\2 |<S> (2"-?a;)|2 dw. 
-2->7T ./-OO 

We have seen in ULI that the right hand integral above converges to 

/oo 

|g(ü;)| du. 
oo 

Combining all we have done we get 

/oo 

\g (u) |2 du = 2*{g,g) = </>/>• 
•oo 

2 Which shows U,ez ^J 
= ^ 

So far, we have shown the existence of a sequence of orthonormal sets of 

functions the limit of which is dense in L2. It might appear that we are nearing the 

end of our search for basis functions on which to base our wavelet transform. What 

we have is a good foundation for an approximation scheme, however this scheme 

falls short of satisfying all the conditions we need for our basis functions. Namely, 

projecting onto Vj for fixed j doesn't provide any frequency information. If we attempt 

to get frequency information by projecting onto other subspaces Vn for various n ^ j, 

we no longer have a orthonormal system, since <j>jk is not orthogonal to 4>nm for 

j 7^ n as either Vj <Z Vn ox Vn <Z Vj. This leads us to introduce the detail space 

Wj associated with Vj, which we will call the scaling space. Formally, Wj is the 

orthogonal complement of Vj in V^_i. This allows us to express Vj_i as the direct 

sum of Vj and Wj. We can express this graphically as 

Vj -> vj+1 -> vj+2 -+vj+3^>--- 

\     \    \    \ 

wj+l  wj+2  wj+3 

Consider the sequence of spaces Wj, since each is the orthogonal complement of 

its companion scaling space Vj and Wj+i is a subspace of Vj, it is clear that Wj 
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is orthogonal to Wj+1. Additionally, we saw earlier that f]jezvj = {°K this imPÜes 

Ujez Wj = ^2- Since tne w/s are all orthogonal, we have a direct sum decomposition 

of L2 namely, 

This certainly is helpful, as all we need to do now is find an orthogonal basis for each 

Wj. Taking the union of all these basis functions will yield an orthogonal basis for 

L2. 

This may seem to be nearly as daunting a task as we initially faced, but we 

can now take advantage of the highly structured nature of the Vj spaces and the 

orthogonality of Wj to the Vj. First, observe that since Wj C V}_i, perhaps we can 

use the orthogonal basis for V}^ to construct an orthogonal basis for Wj. Let us 

proceed along these lines. Any prospective basis function, </?, for W0, must be an 

element of W0 and since W0 C V-i we must have the following representation for <p 

V = Y,M{2x-l) (III.4) 

Such functions tp are the wavelets which we have alluded to throughout this paper. 

Since we are interested in compactly supported basis functions we assume {dt} to be 

finite. We also require cp to be orthogonal to <f> and all its integer translates, since 

W0 is the orthogonal complement of VJ,. To aid us in our investigation we use the 

following representation of the Poisson Summation Formula, a derivation of which is 

found in the appendix, 

J2 (<P (x) ,<t>(x- I)) e~iajl = J2^(co + 2/OT) $ (u + 2kir)    for k,l£Z.       (III.5) 
i k 

Observe that this formula establishes the equivalence of the following statements: 

1. (p(x) is orthogonal to 4>(x - I) for I € Z. 

2- Efcez * (w + 2&TT) $ (u + 2kn) = 0 for all wGi 
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We can see this since if 1 is true then the sum on the left hand side of III.5 is 

clearly zero for all UJ e K. Conversely, if 2 is true then the left hand side of III.5 is 

a Laurent series in e"" which is zero at all values of a;, and must be identically zero, 

therefore each of the inner products in the sum must be zero. 

Now, let us apply this to the problem of finding a basis for Wo- Suppose <p (x) 

is orthogonal to <p (x - k) for k e Z, this is equivalent to 

J2 ^ (w + 2k7T) $ (w + 2kn) = 0       for all   wel. (III.6) 
k 

We can use III.4 to get an expression for *, the Fourier Transform of ip 

* (o = /~ E w (2x - o e~ixidx = \ E d^^ (|) • 
As we have seen before, the Fourier Transform, $, of <f> can be expressed 

Consider the function 

ne)=;Ei*(£+2A;7r)i2- 
A; 

We can write this function in the following way, 

F (0 = ]T $ (f + 2^7r)$(e + 2^7r). 
fc 

Now, by III.5 F is equal to £, (<f> (x), <ß (x - I)) = 1 because ^ form an orthonormal 

basis for V0. So, F (f) = 1 for all £ e R. 

Define the following trigonometric polynomials 

D(t)   =   ±£>- 2 

2 ceo = ^Ec»e~*n 
n 
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Substituting into III.6 we get 

0 = 2^ * (a; + 2k7r) $ (u + 2/br) 

E"(^)*(^)c(^)*(^2-y. + 2&?r\ 
(III.7) 

Observe when k is even £> (^+|^) = D(fj, and when Jfc is odd D (^fz) = 

D{l + 7r)- Similarly, when & is even C (^fE) = C(f), and when k is odd 

C (a,+2
2fc7r) = C (| + 7r). We can rewrite the sum as 

E D 
ÜJ 

Mi $ 
ru + 2(2k)TTs 

+ D(i-MiH $ 
a; + 2 (2k + 1) TT 

(III.8) 

Factoring out the terms which are independent of k we get 

"(!M!)£K!+^) 
+ £ (! + 7r) C (! + 7r) £ |$ (! + TT + 2*7r) |2 .     (IH.9) 

The summations above are simply F (|) and F (f + 7r) so we can write 

Y^ * (w + 2^TT) $ (w + 2A;TT) = 

But F (f) = F (f + TT) = 1, so we have 

(III.ll) 

To simplify our notation we will use u in place of f. Since 4>ok form an orthonormal set, 

C (ui) and C (u + n) cannot simultaneously be zero; this is a consequence of the third 

condition of Theorem II. 1. If III.ll is to be true then when C (u) is zero, C [u + TT) 
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cannot be zero. Therefore, D (u + TT) must be zero. Similarly, C (w + TT) and D (u) 

must have the same zero structure. Since C (u>) is a trigonometric polynomial, D (a>) 

must have the following form 

D(U) = A(Cü)C(U) + TT). 

Where A (to) is 27r-periodic, and A(u) + -n) = —A(u). Further, since we desire (p 

to be compactly supported, A (cu) must be a trigonometric polynomial. Now, III.11 

becomes 

0   =   A (u) C (u + 7r)C (U) + A (u + IT) C (LO + TX + TT)C (u + ir) 

=   A(u)C(cü + 7r)C(uj)-A(u))C(cv)C(u> + Tr) 

since C (u>) is 27r-periodic. Thus we have shown, subject to the above conditions on 

A(u), functions generated by III.4 lie in the orthogonal complement of Vo in V-\. 

What remains to be shown is that these functions ip are orthogonal to their integer 

translates. 

To show this we will again use the Poisson Summation Formula III.5. We see 

that orthogonality of cp (x) to tp (x — I) for I e Z is equivalent to 

1 = Y2 * (w + 2^7r)^(o; + 2A;7r). 
k 

Substituting in the expression for the Fourier Transform of <p and simplifying in a 

manner similar to that used above we get 

l = ^2^(u + 2kir) tt (u + 2krr) = D (u) D(co) + D (u + n) D {u + TT).     (111.12) 

Since D (co) = A (u) C (u + TT), we have 

l = A(u)C(u + TT)A (U)C (U + TT) + A (u + TT) C (U)A (U + TT)C (W) 

Reorganizing slightly and recalling that A (co + TT) = -A (u>) we find 

l = A{u)A(u)C(w + TT)C(U + TT) + A(w) A{u)C (u)C(w). 
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Since <j> (x) is orthogonal to cf)(x ~ I), we know C [to + IT) C (u> + n) + C (u) C (ui) = 1. 

If we additionally require \A (u)\ = 1, then III. 12 will be satisfied, and <p (x) will be 

orthogonal to <p (x — I). 

Let us collect the conditions we have imposed on A(u) and see what type 

function they characterize. 

1. A (u) is a trigonometric polynomial, and 27r-periodic. 

2. A(u + 7r) = -A{u). 

Z.\A{u)\ = l. 

Condition 3 implies the graph of A (u) traces out the unit circle or, in light 

of condition 1, A(w) = a0e~imw for |a0| = 1 and some m. Condition 2 implies m 

must be odd. We have a great deal of freedom in our selection of a0, but since 

we have so far only considered real valued {dt}, we will limit ourselves to a0 = ±1 

and for this development we will assume a0 = 1. We will let m be the highest 

index of the set {ck} 1, that is, if {ck} has four elements we will set m = 3, because 

{ck} = {Co,Ci,C2,C3}. 

Having made these choices we see 

D(co) 
_l       ill 

-y 2f^ 
Cke-ik{u+Tt) _ 

Or, after simplifying 

1     m 

fc=0 

which we can express as 

D(u -ilw 

1=0 

Condition 11.11 implies the highest index of {ck} must be odd. Further any odd m gives rise to 
a translated version of this same (p. 
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where dt = {-l)m~lc^Zi. That is {dt} = {-c^,c~i, -c^IJ, • • • , ci, -c{,c^}. Recall 

this {di} is such that <p (x) = ^ di4> {%x ~ 0 and its integer translates <p(x — k) form 

an orthonormal set in WQ. 

It is not obvious that this set spans W0. We can see that it does by employing 

an argument similar to that above. Suppose g (x) € Wo, then g (x) G V-\ and 

g (x) ±V0. We can express g (x) as 

g(x) = J2ji4>(2x-l). 
i 

This, in turn gives us G (£), the Fourier Transform of g (x) 

C (0 = 5 !>-**(§)• 

Define the Laurent series in e~^, V (£) by 

r(0 = ££>-*. 
z I 

Since g (x) JLVQ, we can obtain the following relationship between C (£) and V (£) 

'-r(£M£)+r(Hni+- 
Now, by exploiting the zero structure of C (£) we can see T (£) must have the following 

form 

r(£) = ß(e)c(e+7r), 

where B (£) satisfies the following: 

1. B (£) is a Laurent series in e~1^. 

2. B (£) is 27T-periodic. 

3. B(£ + TT) = -£(£). 

Conditions 2 and 3 above imply B (£) consists solely of odd powers of e~^. 

Each of these odd powers in turn corresponds to a translation of the function ip. So, 
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any function g (x) € W0 can be represented by a weighted sum ofip(x-k). Thus we 

have shown ip (x — k) span the space W0. 

To summarize, so far we have a sequence of spaces Wj the direct sum of which 

is L2. We have demonstrated a basis {ip (x - k)} for W0 which is constructed from 

functions (f) (2x - I) which form a basis for V-X. Now we need to show an orthonormal 

basis for Wj is given by {<pjk = 2~^2(p (2~^x - k)}. To do this we use III.5. From 

standard Fourier Transform operations we can see 

*ifc(f)   =   2^V2^W (2J'e) 

^(f)   =   2^-***$ (2>'f). 

It is easily verified using arguments similar to those above that ipjk is orthogonal to 

<f>jk. It is equally easy to verify ((pjk,(pjn) = 6n:k. Thus for each scaling level j we 

have an orthonormal set {(pjk}, which lies in Wj. All that remains to show is that 

each set spans the respective space Wj. This is accomplished in a manner completely 

similar to that used for W0. Finally, we have an orthonormal basis for L2, namely, 

{<pjk = 2~i/2ip (2-ix - k)} for j, keZ. 

B.     ALGORITHM DEVELOPMENT 

Armed with this basis for L2 we now set out to implement a discrete transfor- 

mation which, as promised in the introduction, has good time-frequency localization, 

suitable power of approximation, and can be computed quickly. Time localization is 

a result of the compact support of the scaling functions and wavelets, and the fact 

that the support of these functions shrinks as the index of the subspaces V,- and 

Wj decrease (toward -co). Frequency localization is accomplished by dividing the 

spectrum of the input function into "octaves" each of which is represented by the 

projection of input function onto some Wj. This is not as sharp as the frequency 

localization of the Fourier Transform, but it is still quite good, and can be computed 

rapidly. The entire derivation of the basis functions was driven by the desire to take 

advantage of a recursive relation between basis functions. We do not have a recursive 
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relation between the actual basis functions <pjk, however, we do have a linear relation 

between the basis functions and a set of auxiliary functions <f)jk, which we call the 

scaling functions 

<p{x) = '%2dl<l>(2x-l). (111.13) 
i 

This would not be of much use without the associated recursive relation between the 

scaling functions at subsequent levels of scaling 

<t> (x) = 53 ck(f> (2x - k). (111.14) 
k 

We will exploit these relations to achieve a computational efficiency of order N opera- 

tions. In computing a transform we are concerned with projections. Since projection 

operators are linear, we can recast 111.15 and III.16 in terms of the projection of an 

arbitrary function / (x) on <j>ik and (pjk. Specifically, 

(/ (:r), <f> (x)> = 53 ck(f (x) ,<f>(2x- k)) (111.15) 
k 

and 

(/ (x), <p (x)) = 53 dx (f (x), 0 (2x - k)) . (111.16) 
i 

Put another way, these relationships allow us to compute the projection of / (x) onto 

Wj given the projection of / (x) onto Vj-\. 

Before we can develop an algorithm, we need to recognize that the theory we 

have developed so far defines a transform which operates on functions in L2, square 

summable functions defined on the real numbers.   Further, the transform projects 

the input function onto a bi-infinite sequence of subspaces of L2. In practice we are 

given a sequence of uniformly sampled values of the input function instead of the 

actual function.   We will, for the purposes of this development, assume the input 

function / is zero at its boundaries. By doing this we can "pad" the function with 

zeros and apply the transform as if the function were defined over the entire real 
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line. There are methods of treating input functions which are not zero at their 

boundaries, but these methods are beyond the scope of this development. Next we 

must address the question of where in the bi-infinite sequence of subspaces to start 

the transform. The sampled values of / are a piecewise constant approximation to 

the actual input function2. We will define the fine scaling unit to be the "distance" 

(difference in independent variable) between successive samples. A consequence of the 

orthogonality of the scaling functions is that they must have approximation power at 

least one. This is easily seen since \m0 (z)\ + \m0 (z + n)\ =1 for all z 6 R, and 

mo (0) = 1, m0 (n) = 0. Put another way, the polynomial with coefficients {ck} has a 

root at 7T, which tells us the scaling function associated with {ck} has approximation 

power at least one. How do we use this fact? Over the region where / is represented 

by a constant, the scaling function and its translates can exactly represent /. Thus 

the projection of / onto the wavelets, (pjk, at this scaling level is zero. Also, at any 

finer scaling level the projection of / onto the wavelets must be zero. In light of 

these facts we will start the algorithm at scaling level I, where the scaling function 

2~l/2(fr (2lx) has support width of one fine scaling unit. We call this the finest scaling 

level. 

We now outline the algorithm to compute the discrete, orthogonal wavelet 

transform. Figure 3 depicts the arrangement of wavelet and scaling functions. The 

first step in the algorithm is to calculate the projection of the input function onto the 

scaling functions at the finest scaling level. There are many ways to accomplish this, 

one way is presented in the appendix. Once we have these projections, the algorithm 

is simply a matter of using III.15 and III.16 to reorganize the data into the projections 

onto Vi+i and Wi+i. This is accomplished by taking weighted sums of the projections 

onto Vi. To calculate projections onto Vi+i, we use as weights {ck}. To calculate the 

2 Other approximations may be used, for instance, if the input function is represented in a B- 
spline basis of order two, we would have a piecewise quadratic approximation to the input function. 
Similar results for higher order approximations can be developed in a manner similar to that used 
for piecewise constant approximation. 
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projections onto Wi+\, we use as weights {dx}. We repeat this process until we have 

calculated the projections onto all of the subspaces Vj and Wj, for I < j < m. Here m 

is the index such that the scaling function 2_m/2^> (2mx) has width of support equal 

to that of /. The discrete, orthogonal wavelet transform of the function / is given by 

the following collection of projections 

W (/) = {(/. <Pik) \l<j<m}ö {</, <j>mk)} . 

The following is a pseudocode version of what we have just described. 

j-l 

j-2 

weighted sum of 
fine scaling 
functions produces 
coarse wavelet or 
scaling function 

j=-3 (finest scaling level) 

support of scaling functions at finest scaling level 

support of f(x) 

Figure 3. Organization of Basis Function 
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input: 

1. n + 1 dilation equation coefficients for the wavelet we wish to use 

2. sequence of TV values which represent the projection of / onto <f>ik at the 
finest scaling level. iV = n2p~1 + 1 for some p. 

begin algorithm: 

for j — I — m — 1 : 0 

for k = 0 : n2^~1 - 3 

(/, <Pjk) = \/2 ES/T ci-2k (/, <f>j-lj) 

(f, Wh) = V2 Yditk c^2/= (/, 0j-i,j> 
end 

end 

output :W(/) = {(/,^fc) | / < j < O}u{(/,0ofc)} 

This brings up another aspect of implementing the wavelet transform on a 

computer. The sequence of subspaces we project onto is bi-infinite. We saw earlier 

that we could pick a starting index based on the resolution with which / was rep- 

resented. The algorithm to compute the transform must stop at some index. What 

should this index be, and what are the consequences of stopping the algorithm here? 

In this development we will stop the transform at the index where the scaling function 

has support width equal to the width of the input function sample. At each step of the 

transform we are calculating the projections of / onto succeedingly lower frequency 

basis functions as the support width of cpjk increases. Terminating the algorithm at 

any given index establishes a low frequency bound below which we have no frequency 

localization. 

This section has presented a very basic outline of the discrete, orthogonal 

wavelet transform algorithm. There are many choices as to the indices on which the 

algorithm should begin and terminate. The major concept of the algorithm is the use 

of the relationships III.15 and III.16 to rapidly compute projections at one level from 

those at a preceding level. It is precisely these relationships which allow the wavelet 

transform to be computed in order iV operations as we shall now see. 
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To start our study of the computational efficiency of the algorithm we will 

assume the input function is given as N sampled values. We further assume that 

iV = 2pn +1 for some p where n is the highest index of {ck}. We divide the algorithm 

into the following blocks. 

1. Calculation of projections at finest scaling level: Nearly any quadrature rule 
can be used to calculate these projections in O (N) operations. 

2. Calculation of wavelet coefficients: At each level j of the p levels of the algo- 
rithm we must calculate n2J — 2 wavelet coefficients, each of these coefficients 
is calculated by taking a weighted sum of projections onto the scaling coeffi- 
cients at the preceding level. The computational cost for the weighted sum is 
n + 1 multiplies and n additions, this makes the total cost for this block 

v-i 

J2(n2j -2)(2n + l). 
j=o 

3. Calculation of scaling function coefficients : At each level we must calculate 
the projections of the function onto the scaling functions. This is accomplished 
by taking a weighted sum of projections onto the scaling functions at the 
preceding level. The computational cost is identical to that for calculating the 
wavelet coefficients above. 

If we sum the computational cost for each of these blocks we get a total 

algorithmic cost of 

p-i 

O (N) + 2 ]T(n2J' - 2)(2n + 1). 
3=0 

The above sum is dominated by 2 (2n + 1) 2P which is O (N). So, we have developed 

a transform which provides good time-frequency localization, can be used as an ap- 

proximation scheme, and is rapidly computed. Some applications and directions for 

further studies are discussed in the next chapter. 
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IV.        CONCLUSIONS AND DIRECTIONS 
FOR FURTHER STUDY 

We have shown that we can develop a transform based on solutions to the 

dilation equation. This transform is useful because we can alter the characteristics 

of this transform simply by changing the dilation equation coefficients. Also, we 

can compute this transform quickly. In fact, the order JV operations required for 

the wavelet transform is considerably better than the N log (JV) operations required 

for the fast Fourier Transform for large JV. The wavelet transform has the added 

advantage of time localization. A major advantage of the Fourier Transform is that 

the basis functions are eigenfunctions for an operator of fundamental importance, 

namely the Laplacian operator. The wavelet transform, on the other hand, has been 

restricted predominantly to use in the signal processing field. In this field the wavelets 

time-frequency localization and rapid computation are great assets, and projection 

onto a basis of eigenfunctions is not always as desirable as these other properties. 

To be as useful as the Fourier Transform, wavelets must be "well behaved" 

under some operator of interest. By well behaved we mean the image of the wavelet 

under the operator is simply related to the wavelet or its translations and dilations. 

Eigenfunctions for an operator are the ultimate in well behaved functions. It is 

clear from our preliminary work in Chapter II that convolution and convolution type 

operations are the natural operations for wavelets. If we are to find an operator 

under which wavelets would be well behaved, it is natural to first consider operators 

based on convolution like processes. A broad field of such operators is the Zygmund- 

Calderon group of operators. A description of these operators is beyond the scope of 

this work, but this is a burgeoning area for wavelet analysis. 

An area which has great potential is that of tailoring a wavelet to be well 

behaved under a particular operator. To see how we might tailor a wavelet we should 

consider that if we wish our wavelet to have support of width n at the zeroth scaling 
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level, {cfc} must have n + 1 elements, namely CQ, ... , cn. We still desire the wavelets to 

be orthogonal, so we must meet the necessary conditions of section 1.3. Specifically, 

YLk ckCk-2m = 25m for m 6 Z. Each of these conditions can be represented as a simple 

bi-linear form 

c*D2mc = 25m, 

where * indicates conjugate transposition and D2m is the 2m down shift matrix. That 

is, D2m has ones on its 2mth diagonal and zeros elsewhere. If these conditions were 

linear then we could easily determine the solution space for this system. However, 

these conditions are not linear and systems of bi-linear forms are not well studied. 

We can see for m = 0 the condition is J^k \ck? = 2- We can also see for each positive 

value of m the condition is equivalent to the corresponding condition for —m, since 

c*D2mc = 0 = 0* = c*D2m(c*)* = c*D_2mc. So, we have reduced the number of 

conditions from n to n^. To make further progress we need to be able to determine 

the solution space of a system of bi-linear forms. The use of the term space here refers 

to the set of all solutions, not necessarily a linear space. The solutions of a system of 

bi-linear forms need not be linear. Once we have the solutions to this system we would 

then determine which of these solutions could be written as linear combinations of the 

vectors {[v£]} as defined in section 1.2 where p is our desired approximation power. 

This would satisfy the sufficient condition for approximation power. Now we check 

these solutions against the sufficient condition for orthogonality presented in section 

1.3. The result would be a collection of dilation equation coefficients which would 

yield orthogonal wavelets with the desired approximation power. Perhaps among this 

collection we would find dilation equation coefficients which would be well behaved 

under the operator of interest. 
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APPENDIX A. DERIVATION OF POISSON 
SUMMATION FORMULA 

We start with the Poisson Summation Formula as found in any text on Fourier 

Analysis 

^/(n) = ^F(2fc7r), 
nez fcez 

where F (£) is the Fourier Transform of / (x). Consider the function 

f(cjJ) = (iP(x),<l>(x-l))e-i»1. 

We see the Fourier Transform, in the variable Z, of / is given by 

/oo 

y,(x),<fi(x-i)) 
-oo 

iwl „—i; e      e *'<fl. 

Expanding the inner product and simplifying the exponential we get 

/oo     poo   

/    i){x)(j){x- l)dx e-il(-w+tidl. 
oo J — oo 

Now, change the order of integration, and we see 

/oo poo  

V> (x) /     cj){x- I) e-a{u+®dl dx. 
■oo J —oo 

Make the change of variables y = x — I, and we now have 

/oo pOO  

V> (x) e~ix{ui+® /     <j> (y) eiy{-w+t]dy dx. 
-oo J —oo 

We can write the integral in y above as 

/oo    

(j){y)eiy^+üdy = ${Lü + Z). 
-oo 

This leaves us with 

/oo   

</> (x) e-
ix{w+Ö<S> (UJ + £)dx. 

-oo 
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Since $ (u + £) has no x dependence, we can write this as 

/oo 

$ (x) e~ix(w+Üdx$(cj + 0- 
-oo 

The integral in x above is simply the \t (a; + f) which leads us to 

Now, applying the Poisson Summation Formula we get 

J2 <V> (x) ,<j>{x- 0) e-*"' = ]T * (u + 2A;TT) $(a; + 2Ä;7r), 
Jez fcez 

which is the desired representation of the Poisson Summation Formula. 
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APPENDIX B. PROJECTIONS AT FINEST 
SCALING LEVEL 

To see how we might accomplish this, consider the following diagram. 

f(x) 

aligned with constant f (x) 

requires special treatment 

aligned with constant f 00 
} 

support width of scaling functions at finest scaling level 

Figure 4. Scaling Functions at Finest Scaling Level 

Each projection at the finest scaling level is the projection of (f>ik onto either 

a constant or piecewise constant function. Where / is constant over the support of 

(f>ik the projection is simply a weighted integral of (ßik. Where / is piecewise constant 

over the support of 4>Lk we can divide the domain of integration so that the projection 

is given by a sum of integrals over domains where / is constant. Each of these sub- 

integrals is given by a weighted integral of <j>lk over a portion of its support. For 

instance, if we are computing the projection of / onto the second scaling function in 

Figure 4, we would have the following 

/   / 0*0 02 {x) dx = a      <j)2(x)dx + a      <j)2 (x) dx + b      cj>2 (x) dx. 
JO JO Ji J2 

Similarly, the projection onto the third scaling function would be 

/   / {x) <f>3 {x) dx = a      (f>3(x)dx + b      (j>z (x) dx + b      (j>3 (x) dx. 
Jo Jo J\ J2 
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The sub-integrals, fQ (j)3 (x) dx, can be computed once and stored for use since they 

depend only on the wavelet used. We will assume the projection of the input function 

onto Wi is zero. This prevents us from incorporating into the transform the disconti- 

nuities introduced by the piecewise constant approximation of /. It is worth noting 

that at this point in the algorithm we have all the information we ever will about the 

input function. In fact, we do not use the function for the rest of the algorithm. The 

remainder of the algorithm is devoted to rearranging the projections of / onto the 

scaling functions at the finest level into projections of / onto the spaces Wj for j > I. 
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